Страница создана в противовес тем сообщениям средств массовой информации,
в которых некоторые экспериментальные результаты были представлены как
сенсационные.
Немного отвлечёмся и проведём небольшой "мысленный эксперимент". Допустим, некто желает дать ход заведомой спекуляции о наличии чёрной дыры в центре нашей Галактики. Какую массу следовало бы приписать этой гипотетической чёрной дыре, чтобы спекуляция какое-то время не противоречила наблюдаемым движениям звёзд? Из-за конечного углового разрешения телескопов, линейные скорости вращения звёзд вокруг центра Галактики известны, начиная с некоторого радиуса удаления R0, который на сегодня составляет примерно один световой год. На этом радиусе удаления линейные скорости вращения звёзд составляют около 100 км/с и далее линейно растут примерно до 250 км/с на радиусе примерно в 500 парсек (согласно Оорту). Ясно, что для спекуляции имеется очень узкая "ниша": чёрной дыре следовало бы приписать массу в предположении о кеплеровом вращении звёзд именно на радиусе R0 - не на меньшем и не на большем. Не на меньшем - потому, что нет надёжных данных о движении звёзд на меньших удалениях. А не на большем - потому, что если в качестве кеплерового взять вращение на большем удалении, то, на меньшем удалении, линейной скорости вращения полагалось бы быть больше, а в действительности это не так. "Ниша" для спекуляции, действительно, очень узкая, и вряд ли следует обяснять, что оценка массы чёрной дыры по описанному рецепту ровным счётом ничего не доказывала бы.
Именно такую, ничего не доказывающую, оценку массы чёрной дыры проделали специалисты из Института внеземной физики. И сразу же посыпались восторженные комментарии о "фантастическом подтверждении теории тяготения".
А ведь если объект Sgr A* имел бы массу в 3.7*106 масс Солнца, то "теория тяготения" давно имела бы наглядное подтверждение - благодаря тому, что свет, как утверждает эта теория, искривляет свою траекторию вблизи массивного тела. Свет от звёзд, расположенных, по отношению к нам, за центром Галактики, не доходил бы до нас напрямую, т.к. он поглощался бы чёрной дырой. Но он доходил бы до нас "в обход" чёрной дыры - из-за гравитационного искривления траектории - формируя ореол повышенной светимости вокруг объекта Sgr A*. Размер этого ореола можно оценить, используя известное выражение для угла отклонения луча света при прохождении вблизи массивного тела; выражение для углового радиуса максимума у ореола приводится к виду Amax=(2Rg/L)1/2, где Rg - гравитационный радиус объекта, L - расстояние от нас до центра Галактики. При объявленной массе чёрной дыры, её гравитационный радиус составляет около 11 млн.км, оценка для L есть 8000 парсек; тогда Amax составляет почти две угловые секунды. Ореол повышенной светимости с таким угловым радиусом уверенно наблюдался бы, поскольку разрешение современных телескопов почти на два порядка лучше. Но никаких аномалий светимости вокруг объекта Sgr A* не наблюдается.
Наконец, странно выглядит сама концепция падения галактического вещества к центру и пожирания его чёрной дырой. Звёзды, якобы, рождаются где-то на периферии, а затем, двигаясь к центру, непостижимым образом выстраиваются в две стройные колонны - в два спиральных рукава. Даже школьнику должно быть интуитивно ясно, что устья этих рукавов - это не входные ворота для звёзд, а, наоборот, выходные: звёзды движутся не к центру Галактики, а от него. Значит, в центре Галактики находится, возможно, фабрика звёзд, но никак не их утилизатор.
Действительно: "В газовом диске размером менее 0.1 пк вокруг сверхмассивной чёрной дыры Sgr A* в центре нашей Галактики наблюдается несколько десятков молодых звёзд с массами более 40 масс Солнца..." - Новости в сети Интернет: УФН, т.175, 12 (2005) 1304.
"АНОМАЛЬНОЕ УСКОРЕНИЕ "ПИОНЕРОВ"
Этот феномен приобрёл широкую известность после публикации: J.D.Anderson, et al.
Phys.Rev.Lett., v.81, N 14, 1998, p.2858-2861.
Авторы сообщили, что анализ данных радиослежения за космическими аппаратами, достигшими периферии
Солнечной системы и продолжающими удаляться от Солнца, выявил необъяснённую компоненту ускорения
в их движении, имеющую весьма малую величину, около 8.5*10-8 см/с2, и
направленную к Солнцу. Названная статья, фактически, представляет собой обзор целого ряда явлений,
которые НЕ могли быть причиной обнаруженного "аномального ускорения"; вопрос о его происхождении
остался открытым. Теоретики - профессионалы и любители - буквально "вцепились" в этот феномен, предлагая
для его объяснения свои гипотезы - одну экзотичнее другой. Сильна была их уверенность в том, что
объяснения ищутся для реального физического эффекта.
Но от этой уверенности ничего не остаётся, если внимательно посмотреть на приведённый авторами график. Он иллюстрирует остаточные разности допплеровской скорости (измеряемой минус предсказываемой) для Пионера-10 на семилетнем интервале. Заметно, что на систематический линейный рост этих остаточных разностей - на основе которого и сделали вывод об "аномальном ускорении" - наложена слабая раскачивающаяся волна с периодом в один год. Едва ли можно серьёзно говорить о том, что космический аппарат, движущийся где-то на периферии Солнечной системы, имеет годичную, да ещё раскачивающуюся, модуляцию своей скорости. Между тем, известно, что при обработке потоков данных, имеющих цикличности, вполне возможно появление такого рода "раскачек". Едва ли можно сомневаться в том, что названная годичная волна на графике не соответствует реальному физическому эффекту, а является "эффектом обработки". Но если фильтрация при обработке данных допускает "пролезание" периодической паразитной компоненты, то "пролезание" линейной паразитной компоненты она должна допускать тем более. Было бы странно, если линейная паразитная компонента при этом отсутствовала бы!
Добавим, что мы усматриваем косвенное, но, на наш взгляд, весьма важное свидетельство о том, что заявленное "аномальное ускорение аппаратов к Солнцу" является не реальным физическим эффектом, а "эффектом обработки". Речь о том, что для аппаратов разных конструкций (Пионер-10 и -11, Галилео, Улисс) "аномальное ускорение" оказалось практически одинаковым в огромном диапазоне расстояний от Солнца - от 1.3 до 67 астрономических единиц! Самым простым объяснением такого чуда является допущение об одинаковом паразитном эффекте, имевшем место при обработке различных сегментов данных.
Действительно, если на аппараты действовала бы некоторая глобальная сила -
обусловленная, например, той или иной модификацией закона обратных квадратов у
солнечного тяготения - то эта сила действовала бы и на другие космические тела. Д-р L.Iorio
рассчитал, для спутников Нептуна, возмущения орбит , которые вызывала бы названная малая тяга к Солнцу.
Реальные возмущения - на 1-2 порядка меньше (L.Iorio. Does the Neptunian system of satellites
challenge a gravitational origin for the Pioneer anomaly? Mon.Not.R.Astron.Soc.
arXiv:0912.2947v3 [gr-qc] 5 Apr 2010). Да что там спутники планет! А сами-то планеты?
Если бы и планеты были подвержены тому же воздействию, что и "Пионеры", то орбиты планет
заметно эволюционировали бы. Непрерывная малая тяга в направлении к Солнцу вызывала бы
попятное вращение линий "афелий-перигелий" у орбит планет (Алексеев, Бебенин, Ярошевский.
Маневрирование космических аппаратов). В приближении малого эксцентриситета, этот угол
поворота за сто лет составил бы W100=100*2*pi*Ar/(GM/R2),
где Ar=8.5*10-8 см/с2 - возмущающее радиальное
ускорение, M - масса Солнца, R - средний радиус орбиты планеты. Для Марса W100
составил бы около 38 угловых секунд, для Юпитера - около 446 угловых секунд, и так далее
(чем больше радиус орбиты, тем больше величина W100). Но если такое попятное
движение перигелиев планет имело бы место, то о нём было бы хорошо известно ещё в XIX веке.
Итак, сразу следует отбросить множество предложенных
"объяснений" "эффекта Пионеров" - основанных на поправках в закон всемирного тяготения
или на воззрениях о том, что "до некоторого удаления от Солнца эфир жидкий, а далее
он кристаллический". Поразительно: многие "объяснители" "эффекта Пионеров" полагали,
что эффект имеет место, начиная с орбиты Урана (20 а.е) или с орбиты Плутона (40 а.е) - хотя
в статье Андерсона и др. было чётко сказано о диапазоне 1.3 - 67 а.е. Но никто не поправлял
горе-объяснителей - наоборот, эта весёлая дискуссия всячески поощрялась. Почему?
Мы сильно подозреваем, что задача статьи Андерсона с соавторами была такова:
внушить научному сообществу ложную уверенность в том, что, с точностью до порядка
10-8 см/с2, солнечное тяготение действует в согласии с
законом всемирного тяготения вплоть до 60 а.е и более - и, таким образом, исключить даже
мысль о том, что два "Пионера" и два "Вояджера" пересекли ГРАНИЦУ ДЕЙСТВИЯ СОЛНЕЧНОГО
ТЯГОТЕНИЯ, которая проходит по внешнему краю пояса Койпера (48 а.е.). Обнуление центростремительного
ускорения к Солнцу при переходе через эту границу следует из официальных данных
слежения за этими аппаратами. См. статью "Внешний край пояса Койпера - граница области
Солнечного тяготения" на http://newfiz.narod.ru , а также книгу "Этот "цифровой" физический мир",
там же.
"ТРАГИКОМЕДИЯ С ЗОНДОМ SMART-1"
Космический аппарат SMART-1 Европейского космического агентства (ЕКА, ESA),
после его вывода на околоземную стартовую орбиту, более года "раскачивал"
её с помощью двигателя малой тяги, подтягивая апогей к орбите Луны. Был
запланирован захват зонда тяготением Луны при первом же входе в т.н. сферу
действия Луны, радиус которой около 60000 км. Затем, после снижения на
окололунную орбиту, планировалось сделать множество фотографий лунной
поверхности. В частности, обещали заснять следы пребывания американских
астронавтов на Луне - поэтому миссия была широко прорекламирована.
Специалисты хорошо знали цену этим обещаниям - известно, что Луна чуть не постоянно "скрипит" из-за слабых "лунотрясений", что там имеет место электростатическое "оползание" грунта, и что движение линии терминатора (границы день-ночь) по поверхности Луны сопровождается пыльной бурей. В течение месяца полоса пыльной бури дважды прокатывается по поверхности Луны, и наивно полагать, что от "следов астронавтов" что-то могло сохраниться. Спецы знали об этом, но помалкивали.
Кроме того, российские и американские специалисты знали о странностях лунного тяготения - в частности, что оно действует на космические аппараты лишь в небольшой окололунной области, примерно до 10000 км от её поверхности. Но об этом тоже помалкивали. Поэтому европейские спецы никак не подозревали, что SMART-1 далеко не долетит до области действия тяготения Луны, и что этот проект обречён на провал.
О том, как это всё происходило в реальном времени, красноречиво свидетельствует весёлая дискуссия на специализированном форуме "Новости космонавтики", конспект которой мы предлагаем для ознакомления. Если кому-то покажется, что этот конспект сделан предвзято и тенденциозно, пусть сделает получше.
Конспект дискуссии ЗДЕСЬ.
"DAWN И ВЕСТА: ОЧЕРЕДНАЯ ШУТКА NASA"
СМИ уже заливаются соловьями про успешный захват зонда DAWN
тяготением Весты, крупного астероида из пояса между Марсом и Юпитером.
До этого успешного захвата, зонд вывели на квази-синхронную орбиту
с Вестой, и подгоняли по скручивающейся спирали к Весте всё ближе
и ближе - подходящими включениями движка, разумеется. И вот, как бы,
свершился захват!
http://dawn.jpl.nasa.gov/mission/status.asp
July 17, 2011
Dawn in Orbit Around Vesta
As Dawn continued thrusting, it was gently captured in orbit by Vesta around 10:00 PM PDT on July 15... Dawn is about 13,000 kilometers (8,000 miles) from Vesta today and approaching it at 23 meters per second (51 mph).
July 13, 2011
Approach Phase Continues Smoothly
Dawn is about 23,000 kilometers (14,000 miles) from Vesta today and approaching it at 37 meters per second (83 mph).
Если верить этой официальной информации, захват произошёл на удалении примерно 17000 км. По канонам практической космонавтики, это должно было произойти на границе т.н. сферы действия астероида, т.е. на границе области, в которой тяготение астероида доминирует над солнечным. Формула для радиуса сферы действия: Rсд=D*(m/M)2/5 (Левантовский. Механика космического полёта в элементарном изложении). В нашем случае D - расстояние между Солнцем и Вестой, m - масса Весты, M - масса Солнца. Немедленно вычисляем массу Весты, которая оказывается равна 3.18*1019 кг. При среднем значении радиуса Весты, около 260 км, для её средней плотности получаем 432 кг на кубометр. Не маловато ли? У каменистых пород плотность на порядок поболе! А, может, астероидам не писан закон сферы действия? Нашлись умники, которые выразили нам сомнение в корректности использования именно сферы действия - в теории, мол, есть и другие сферы, например, сфера Хилла или сфера влияния. Но они обе значительно больше сферы действия, и тогда масса и средняя плотность Весты окажутся ещё меньше, соответствуя пенопласту.
Это не всё. Если масса Весты (через сферу действия) у нас в кармане, то сразу получим период обращения по орбите, согласно третьему закону Кеплера: T=2*pi*(A3/2)/(G*m)1/2, где A - большая полуось орбиты. При A=17000 км, T составит 9.55*106 секунд или 110 суток - почти 4 месяца. Сбросим один месяц - учитывая, что движение сразу после захвата будет происходить не по круговой траектории, а по полуэллипсу снижения. Пусть - три месяца. Заранее было неизвестно, где произойдёт захват, поэтому для убеждения в том, что захват произошёл, надо было отследить хотя бы половину витка - БЕЗ ПОДРАБОТКИ ДВИГАТЕЛЕМ. На это потребовалось бы полтора месяца, так? Но умельцы из NASA так долго ждать не стали. Это - не их методы. Они сообщили об удачном захвате уже на вторые сутки. Как же они смогли удостовериться в захвате? Да никак. Они просто соврали. Не в первый раз же.
И это не всё. Сообщалось, что после захвата зонд будет ещё долго снижаться к Весте по скручивающейся спирали... Стоп! Скручивающаяся спираль не является кеплеровой траекторией - это не эллипс, не парабола и не гипербола! Значит, подработки двигателем будут продолжаться и после захвата, КАК И ДО НЕГО! Значит, "захват" можно было устроить неделей раньше или неделей позже - от этого в движении зонда не изменилось бы ровным счётом ничего. Вот это, я понимаю, подстраховочка! Заранее внушали публике-дуре, что, после захвата, подработка двигателями будет продолжаться! Поди догадайся, что только благодаря этой подработке и будет продолжаться снижение!
Но всё ещё хуже. При полученной массе Весты, на удалении 17000 км, первая космическая скорость составила бы 11.2 м/с. Судя по официальной информации, DAWN сразу после захвата приближался к Весте со скоростью, большей чем первая космическая. Это они называют "gently capture" - мягкий захват?!
Нет. не научились ещё в NASA врать правдоподобно. А врать им приходится. Две предыдущие попытки вывести зонд "на орбиту вокруг астероида" (NEAR и Хаябуса) с полной очевидностью показали: аппараты не испытывают гравитационного притяжения к астероидам. Ибо тяготения у астероидов - нету. См. статью "Имеют ли собственное тяготение малые тела Солнечной системы" на http://newfiz.narod.ru , и книгу "Этот "цифровой" физический мир", там же.
"НЕЙТРИНО, ЛЕТЯЩИЕ БЫСТРЕЕ СВЕТА"
Оглушительное впечатление на доверчивых репортёров произвело заявление учёных о том, что они
экспериментально обнаружили движение нейтрино со сверхсветовой скоростью
(см. Препринт).
Расстояние в 730 км между источником нейтрино в ЦЕРНе и их детектором в Gran Sasso (Италия) -
сквозь земную кору - нейтрино, якобы, преодолевали примерно на 61 нс быстрее, чем в случае
движения со скоростью света.
В вышеназванном препринте приведено достаточно информации для однозначного вывода: заявленный результат является физически бессмысленным. На наш взгляд, по-другому и быть не могло: физически бессмысленны все эксперименты с нейтрино, поскольку такой частицы нет в природе. Нейтрино выдумали для спасения закона сохранения релятивистского импульса, который с очевидностью нарушался при бета-распаде - что повергало в прах специальную теорию относительности.
"...всех тоскливее было тем, кто занимался измерениями импульса отдачи у атома, из ядра которого выстреливался релятивистский электрон при бета-распаде. Здесь устраивалась как бы «очная ставка» двум методикам: импульс отдачи атома измерялся по «немагнитной» методике, а импульс выстреливаемого электрона ¶¶¶ по «магнитной», во всей своей красе. И вот, закон сохранения импульса нарушался: импульс электрона получался чудовищно больше, чем импульс отдачи атома. Теперь, внимание: не потеряйте нить рассуждений. Импульс электрона измерялся по непогрешимой «магнитной» методике ¶¶¶ значит, правильно измерялся именно он. Следовательно, импульс отдачи у атома оказывался чудовищно меньше, чем требовалось по закону сохранения импульса. Куда же тогда пропадала эта недостающая часть? Пялились исследователи на фотопластинки, вертели ими так и ся궶¶ Можно было поступить совсем просто: отбросить иллюзорные релятивистские завышения импульсов у электронов, и тогда их результирующие импульсы становились бы равными импульсам отдачи! Но ¶¶¶ что вы! это было бы святотатство! Уж лучше было сидеть и страдать молчබ¶ Ферми смотрел-смотрел на эти страдания, и его доброе сердце дрогнуло. «Ладно, - подмигнул он, - вы только не плачьте! Вот что мы сделаем: введём новую частицу. И припишем ей всё, что требуется. Вам нужен импульс? ¶¶¶ у ней он есть!» - «Как?! ¶¶¶ просияли от радости экспериментаторы. ¶¶¶ Так просто? Впрочем, погодите-погодите. Мы же такую возможность исследовали. Никаких следов третьей частицы при бета-распаде не обнаруживается!» - «Ну, и что такого? Если следов не обнаруживается, значит, эта частица их не оставляет! Я же говорю ¶¶¶ припишем всё, что требуется!» - «Да, н¶ странно как-то. Трудно поверить! Частицබ¶ импульс имеет¶¶¶ и ¶¶¶ никаких следоⶶ¶ Как же её поймать?» - «А зачем обязательно ¶¶¶ поймать? Сам по себе процесс ловли ¶¶¶ разве он удовольствия не доставляет? Так ловите, до скончания века, и наслаждайтесь! На зависть окружающим!» - «А, ведь, действительно! Позвольте полюбопытствовать, а как предлагается назвать эту неуловимую прелесть?» - «Да придумаем хохмочку какую-нибудь¶¶¶ Вот: назовём эту прелесть нейтрончиком!»
Слово «нейтрончик» на родном итальянском языке Ферми звучит как «нейтрино». Ну, так и повелось¶¶¶ А карьеру эта «неуловимая прелесть» сделала на редкость головокружительную. Шутка ли: её быстренько перевели в разряд фундаментальных частиц ¶¶¶ которых всего-то, считается, четыре. Из грязи ¶¶¶ да в князи! В физике появился новый раздел ¶¶¶ «Физика нейтрино». Понастроили грандиозных «детекторов». Думаете, эти детекторы реагируют на нейтрино? Ну, что вы! Они реагируют на продукты реакций, которые, как полагают теоретики, может инициировать только нейтрино ¶¶¶ одно на триллион, да и то в урожайный год. С этими «детекторами» получается как с заборами, которые строят известным методом: пишут неприличное слово из трёх букв и прибивают к нему доски. Вот на чём держится закон сохранения релятивистского импульса!"
(О.Х.Деревенский. Фиговые листики теории относительности)
Смех смехом, но, действительно, есть так называемые детекторы нейтрино, которые на что-то там срабатывают. Учёные уверяют нас в том, что эти детекторы срабатывают на нейтрино, но не приводят даже элементарных подкрепляющих свидетельств - в том числе и в рассматриваемом эксперименте. Здесь нейтрино, якобы, рождались в результате распадов мезонов, порождаемых при прохождении быстрых протонов сквозь графитовую мишень. Пачка таких протонов, длительностью около 10 мкс, вырезалась, при включённом отклоняющем магните, из циклотронного пучка, сгустки которого повторялись на частоте 500 кГц, так что на вырезаемой пачке укладывалось пять таких сгустков (см. Рис.4 в Препринте). Не представляло особых сложностей вырезать все эти пачки, начиная с одной и той же фазы первого сгустка. И тогда - поскольку вероятность рождения нейтрино считалась пропорциональной количеству влетающих в мишень протонов - "пачка" продетектированных нейтрино (после накопления данных, конечно) имела бы ту же длительность и аналогичные пять амплитудных горбов. Но нет, подобных корреляций между событиями на "источнике" и "детекторе" нейтрино категорически не наблюдалось. Неясно, была ли вообще разница между рабочей скоростью счёта детектора, на интервалах ожидаемого прилёта нейтрино, и фоновой скоростью счёта, в течение остального времени. Таким образом, авторы не привели никаких свидетельств о том, что срабатывания детектора в Gran Sasso были скоррелированы с событиями в ЦЕРНе. Уже здесь можно сделать вывод: всё, что авторы делали дальше, лишено физического смысла.
А делали они вот что: применяли изощрённую статистическую обработку данных. Ключевой временной сдвиг - давший возможность измерить, насколько нейтрино обгоняют свет - они определяли как такой сдвиг, при котором "максимально правдоподобно" соответствовали друг другу результаты цифровых преобразований "волновой формы" пачки протонов в ЦЕРНе и временной развёртки срабатываний детектора в Gran Sasso. При таком подходе, функция максимального правдоподобия представляла собой произведение соответствующих вероятностей. После таких перемножений для отселектированных данных за 2009, 2010 и 2011 годы, "максимальное правдоподобие" имело такую величину: её десятичный логарифм составлял прмерно -75000, т.е. сама величина составляла ноль целых и, после десятичного разделителя, ещё 74999 нолей до первой значащей цифры (см. Рис.8 в Препринте). Важный нюанс: это сумасшедшее "правдоподобие" всё уменьшалось и уменьшалось по мере увеличения массива данных, бравшихся в обработку. А ведь если в данных была бы регулярность, то, по мере накопления данных, эта регулярность, наоборот, проявлялась бы всё отчётливее!
Но регулярность в данных не проявляется в нейтринных экспериментах. И авторы, чтобы усилить иллюзию достоверности своего результата, пустились на такой трюк: применили "слепой метод" измерений, при котором намеренно использовали набор аппаратных временных задержек по состоянию на 2006 г. В этом наборе некоторые из значимых задержек попросту отсутствовали, и были впоследствии добавлены, а некоторые были впоследствии уточнены (см. Табл.1 в Препринте). Так вот: конечный результат, т.е. опережение в 61 нс, был получен как разность между "максимально правдоподобным временным сдвигом", 1049 нс, и суммой сделанных после 2006 года коррекций в задержки, 988 нс. Величины некоторых из этих коррекций превышают погрешность конечного результата на 1-2 порядка, как и сумма этих коррекций - поэтому "слепой метод" измерений должен был, по замыслу авторов, исключить возможность подгонки под желаемый результат. Но что вышло в итоге? При обработке измерений 2009-2011 годов использовались, ради "слепого метода", заведомо неверные задержки 2006 года. Значит, заведомо неверно определялся и "максимально правдоподобный временной сдвиг". Действительно, во временные стробы, сдвинутые друг относительно друга на 988 нс (т.е. почти на один сгусток в пачке протонов), должны попадать совсем разные наборы срабатываний детектора, и соответствующие "максимумы правдоподобия" отнюдь не должны быть разнесены на те же самые 988 нс. "Должны, - возразят нам, - если распределение срабатываний детектора было скоррелировано с "волновой формой" пачки протонов". Извините: этих корреляций не было!
Если бы эти корреляции были, их бы нам непременно предъявили. И не потребовалась бы изощрённая статистическая обработка данных, ведь нахождение сдвига между двумя однотипными гребёнками не представляет особых сложностей.
Но нет - просто и убедительно у нейтринщиков категорически не получается. Язык правды они не используют. И "сенсационный" результат, который они выдали, не доказывает не только того, что нейтрино летели быстрее света - он не доказывает и того, что нейтрино летели вообще.
"КВАНТОВО-ЗАПУТАННЫЙ ЗАДЕРЖАННЫЙ ВЫБОР"
В ноябрьском номере Science (vol. 338, 2012) опубликованы две статьи подряд
на одну и туже тему: A.Peruzzo, et al. "A quantum delayed-choice exreriment", p.634,
и F.Kaiser, at al. "Entanglement-enabled delayed-choice experiment", p.637.
Подобный приём сдвоенных публикаций уже не раз использовался в последнее
время - чтобы создать у добропорядочного читателя впечатление, будто открытие
было сделано в двух лабораториях совершенно независимо, ибо "идея витала
в воздухе".
О каком открытии речь идёт на этот раз? Иследователи ВНЕЗАПНО вспомнили, что уже сотню лет в физике отсутствует объяснение корпускулярно-волнового дуализма света, т.е. объяснения, почему свет ведёт себя то как волны, то как частицы - в зависимости от условий опыта. И вот, авторы утверждают, что, с помощью высокотехнологичных оптических устройств, они решили проблему дуализма раз и навсегда.
Они направляли одиночные фотоны в интерферометр Маха-Цендера, имевший два детектора фотонов. Первый расщепитель луча разделял "путь фотона" на два - так что фотон мог попасть либо в первый, либо во второй детектор. Но на пересечении этих путей стоял второй расщепитель луча, который мог давать дополнительное разделение путей - такое, чтобы фотон, опять же, попал в первый или второй детектор. Мы говорим "мог давать", потому что особенностью второго расщепителя была его управляемая переключаемость между двумя состояниями: "расщепление есть" и "расщепления нет". В первом состоянии, как считалось, интерференция в приборе имела место, и попадание фотона в тот или иной детектор должно было определяться волновыми свойствами фотона. Во втором же случае, когда инерференция в приборе отсутствовала, попадание фотона в тот или иной детектор должно было определяться его корпускулярными свойствами.
А теперь - самое интересное. Быстрые переключения состояния второго расщепителя ("есть" или "нет") производились на тех интервалах времени, когда фотон уже прошёл первый расщепитель, но ещё не дошёл до второго. При этом, по логике авторов, второй расщепитель вёл себя "сугубо квантово", пребывая в смешанном состоянии, которое являлось суперпозицией двух чистых ("есть" или "нет") - а, значит, и фотон оказывался в квантово-запутанном состоянии, в котором у него сразу есть и волновые, и корпускулярные свойства!
Поразительно: авторы полагают, что поместили фотоны в принципиально новые условия - в которых "они не знают заранее, с каким типом устройства столкнутся, и какие свойства демонстрировать". Как будто тезиса о том, что фотоны "знают заранее, как себя вести", кто-то серьёзно придерживался.
Что же здесь принципиально нового? Как всегда, фотон не размазывается так, что одна его часть попадает в один детектор, а другая - в другой. Фотон регистрируется только целиком - либо одним детектором, либо другим. Когда второго расщепителя "нет", то, скажем, в 50% случаев фотон попадает в первый детектор, и в 50% случаев - во второй (разумеется, статистику набирать надо). Когда второй расщепитель "есть", то, скажем, фотон в 30% случаев попадает в первый детектор, и в 70% случаев - во второй. Тогда, при управляющем воздействии на расщепитель, дающем "смешанное состояние есть-нет", фотон, скажем, в 40% случаев попадает в первый детектор, и в 60% случаев - во второй. И так - для каждого управляющего воздействия, которые различаются по процентовке "есть-нет". Отсюда авторы и получили, по их словам, соотношения между процентами волновых и корпускулярных свойств в поведении фотонов!
И вот этот высокий слог называется объяснением корпускулярно-волнового дуализма? Похоже, сами авторы совсем квантово-запутались! Состояния второго расщепителя ПЕРЕКЛЮЧАЛИСЬ, а, значит, он либо "был", либо его "не было" - без малейшего намёка на смешанное состояние "сразу и был, и не был"! Значит, и каждый фотон проходил через прибор при одной из двух ситуаций - второй расщепитель "есть" или его "нет". Изменение управляющего воздействия лишь сдвигало процентовку между этими двумя ситуациями и, соответственно, проценты попадания квантов в тот или иной детектор. И - ничего больше, никаких "соотношений между волновыми и корпускулярными свойствами"!
Добавим, что эти смехотворные претензии авторов вызваны ортодоксальной догмой о том, что фотон - это нечто самодостаточное, летящее со скоростью света. Пока эта догма будет считаться за истину, корпускулярно-волновой дуализм не будет объяснён. Объяснение предложено, но на основе другой модели. Квант света волновыми свойствами не обладает, это просто порция энергии, которая перебрасывается целиком с одного атома на другой после принятия решения автоматикой, просчитавшей этот переброс - а вот при этих расчётах сканируются различные пути, отчего имеют место "волновые свойства". По ходу этих расчётов, состояние того или иного варианта пути может измениться, но всё равно решение, для каждого кванта, будет принято ОДНО - с учётом либо старого, либо нового состояния. Всё логично - в полном согласии с экспериментальными реалиями. Тут - и волновые свойства, и корпускулярные, которые имеюся ПРИ ЛЮБОЙ СХЕМЕ ОПЫТА, не мешая друг другу.
См. подробности в книге "Этот "цифровой" физический мир" на http://newfiz.info
"ПЕРВАЯ МЯГКАЯ ПОСАДКА НА КОМЕТУ"
Сенсация, о которой СМИ сообщили 12 ноября 2014 г. - спускаемый модуль
ФИЛЫ, отделённый от зонда РОЗЕТТА Европейского космического агентства
(ЕКА), произвёл посадку на поверхность ядра кометы Чурюмова-Герасименко (ЧГ).
По заявлениям учёных, модуль "падал" на комету под действием её гравитационного притяжения. Более того, после первого контакта с кометой, ФИЛЫ совершил ещё пару отскоков и закрепился на поверхности только с третьего раза. Эти возвращения после отскоков послужили, в глазах широкой публики, бесспорным свидетельством о наличии собственного тяготения у кометы ЧГ. Но мы приведём свидетельства о том, что эти возвращения осуществлялись двигателем - весь спектакль с отскоками был заранее запланирован и тщательно подготовлен.
Прежде всего, обращение самой РОЗЕТТЫ вокруг кометы ЧГ происходило, как и в предыдущих аналогичных миссиях (NEAR, HAYABUSA, DAWN) отнюдь не благодаря гравитационному действию кометы, а благодаря подработке двигателем. Дилетанты возражают, что при этом двигатель должен был бы работать постоянно, и рабочее вещество для него быстро закончилось бы. Они не понимают, что облёт малого космического тела, свободно движущегося по околосолнечной орбите, возможен при эпизодических кратковременных включениях двигателя. Когда двигатель выключен, аппарат тоже свободно движется по околосолнечной орбите. Кратковременное включение двигателя изменяет параметры околосолнечной орбиты аппарата - отчего, по отношению к рядом летящему малому космическому телу, направление дрейфа аппарата изменяется. С помощью грамотных кратковременных включений двигателя и гоняют аппарат вокруг малого тела по кусочно-ломаной траектории. В случае с РОЗЕТТОЙ, это хорошо понимали многие, поэтому "доказательства" наличия тяготения у кометы возлагались именно на трюк с посадочным модулем.
На то, что посадка ФИЛЫ происходила отнюдь не в режиме свободного падения, безошибочно указывает поразительная деталь. В предыдущей миссии, японский зонд HAYABUSA сбросил микроробота на поверхность астероида с минимальной высоты, всего с 20 м - но вместо того, чтобы медленно упасть на астероид, микроробот (на котором не было двигателя) медленно улетел прочь. Теперь сравните: ФИЛЫ был отправлен "падать на комету" с высоты, в тысячу раз большей - с 20 км - и посадка удалась! Неужели просто повезло? Нет, глупо было отправлять РОЗЕТТУ в десятилетний полёт до цели в расчёте на совершенно невероятное везение на кульминационном этапе. Конечно же, трюк с посадкой удался потому, что был тщательно обеспечен. Пропагандисты любят подчёркивать, что ФИЛЫ не имел системы навигации. Значит, мол, только и мог, что пассивно упасть на комету. Эти пропагандисты лукавят. При использованном сценарии - система навигации и не нужна вовсе.
Если бы модуль свободно падал на комету под действием её тяготения, то он с равным успехом упал бы на неё с любого направления. Если же свободное движение модуля происходит только под действием солнечного тяготения, т.е. по околосолнечной орбите, то наилучшая точность попадания на комету обеспечивается, если направить модуль по участку той самой траектории, по которой движется и комета. Т.е., либо модуль должен догонять комету по её следу, либо наоборот - тогда минимален уход модуля вбок из-за того, что орбитальные скорости модуля и кометы немного различаются. Но, для реализации такого сценария при минимальной комлектации модуля, он должен иметь двигатель и систему ориентации, которая зафиксировала бы вектор тяги двигателя в правильном направлении. Достоверно известно, что ФИЛЫ имел и то, и другое. Его ориентация, амортизаторами на комету, обеспечивалась гироскопическим стабилизатором, работавшим в течение всей посадки. Был и двигатель, официальное назначение которого - прижимать модуль к поверхности кометы в процессе закрепления на ней. Но ясно, что этот двигатель мог быть включён и в любой момент полёта - чтобы сообщить модулю импульс в направлении к комете.
Теперь, внимание, самый драматический эпизод: первый контакт с поверхностью кометы. Что при этом произошло - загадка. Даже официальная версия ЕКА насчёт этого эпизода изменялась неоднократно. В общем, прижимающий к поверхности двигатель ПОЧЕМУ-ТО не включился, а гарпуны и буры не закрепили модуль на поверхности, и он отскочил от неё, взмыв на полкилометра. Этот отскок был очень нужен тем, кто "доказывал" наличие у кометы тяготения. Логика здесь совсем простая. Если, как мы утверждаем, тяготения у кометы нет, то, после отскока, модуль на неё не возвратился бы - ведь он двигался, как нас уверяют, пассивно. А модуль на комету возвратился - значит, мол, тяготение у неё есть. Позвольте - этот возврат мог быть обеспечен двигателем, правильное направление тяги которого сохранял гиростабилизатор! Мы ведь знаем: упования на свободное падение, с минимальной высоты на астероид, болванок без двигателей - с треском провалились, что сопровождалось потоками лжи от руководителей полёта. А, в случае с ФИЛЫ, нас призывают верить на слово: двигатель был, но его, мол, не включали!
Но нельзя им верить на слово, ибо они жестоко проврались. Смотрите: ФИЛЫ совершил два отскока и, соответственно, три касания поверхности кометы - в 15:33, 17:26 и 17:33 по UTC. Сигнал от кометы ЧГ до Земли шёл полчаса, т.е. информация о первом касании пришла в 16:03 по UTC. Разница UTC с московским временем - 3 часа. Так вот, в теленовостях показали прямое включение из ЕКА: в 19:03 по московскому времени там вспыхнула бурная радость, которая не ослабевала почти до утра - ЕКА транслировала её по Интернету. Факт: бурная радость началась в момент получения сигнала о первом касании и не ослабевала несколько часов. Но ведь сразу после первого касания возникла, согласно официальным раскладам, дикая нештатная ситуация: прижимающий двигатель не сработал, прицепки не сработали, модуль не закрепился и уходит от кометы, причём, неясно, вернётся ли он на неё... Вся миссия под угрозой провала, а в ЕКА видят это и бурно радуются! Как же так? Тут небогатый выбор. Либо ЕКА - это сборище идиотов, которые неадекватно воспринимают происходящее. Либо, что более вероятно, ситуация-то была совершенно штатной - с модулем происходило именно то, что и было задумано. Но это и означает, что отскок ФИЛЫ от кометы был запланирован и обеспечен заранее. "Когда надо", двигатель не сработал, а когда "не надо" - отлично сработал. И - вот вам, великолепный отскок с возвращением! Легко!
Были времена, когда, при несовпадании реалий с ожиданиями учёных, эти учёные лгали и изворачивались постфактум. Теперь они начали готовить лживые сценарии заранее. И если они подготовили лживый сценарий, чтобы "доказать" наличие собственного тяготения у кометы ЧГ, то можно смело сказать: тяготения у неё нет.
"ВПЕРВЫЕ ПРОДЕТЕКТИРОВАЛИ ГРАВИТАЦИОННЫЕ ВОЛНЫ"
Речь идёт о сенсации, озвученной средствами массовой информации 11 февраля 2016 г.:
двумя детекторами проекта Advanced LIGO зарегистрирован сигнал, который проинтерпретировали
как отклик на гравитационные волны, излучённые при слиянии двух массивных чёрных дыр.
Первоисточник - статья для Phys.Rev.Lett. - находится по адресу:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
Современные исследователи закрывают глаза на множество фактов, вопиющих о том, что затея с детектированием гравитационных волн - физически бессмысленна. Мы на многочисленных примерах показали, что массивные тела лишь подчиняются действию тяготения, но к производству тяготения массивные тела не имеют никакого отношения (см. книгу "Этот "цифровой" физический мир" на newfiz.info). Отсюда немедленно следует, что чёрных дыр - в традиционном понимании - в Природе нет. Но даже если бы существовали далёкие источники "пространственной ряби", эта рябь принципиально не могла бы проникнуть в околоземное пространство, и вот почему. Радиусы солнечной и планетарных областей действия тяготения конечны (радиус земной гравитационной воронки - около 900000 км). Причём, имеются неопровержимые свидетельства о том, что, в околоземном пространстве, гравитационные склоны не являются перекошенными из-за суммирования земного гравитационого потенциала с солнечным. Т.е., в пределах области земного тяготения, солнечное тяготение - отключено (см. ту же книгу). Значит, в околоземном пространстве отсечено даже солнечное гравитационное воздействие на пробные тела; попытки же детектировать влияние источников, удалённых на сотни Мегапарсек - эти попытки совершенно несерьёзны.
А вот чего стоит сама идея детектировать "гравитационные волны" благодаря фазовым эффектам в оптическом интерферометре. Если бы "гравитационная волна" оказывала силовое воздействие на пробные тела, на которых укреплены зеркала резонатора, то она воздействовала бы на оба зеркала - с небольшой разницей во времени. Эта разница во времени - даже при скорости "гравитационной волны", равной скорости света - была бы, очевидно, меньше времени релаксации оптического резонатора (эта релаксация требует нескольких прохождений резонатора со скоростью света). Таким образом, оптический резонатор не успевал бы отрабатывать силовое воздействие "гравитационной волны". Поэтому нам говорят не про силовое воздействие: "гравитационная волна", якобы, вызывает деформацию самого пространства. Но это означает, что в области, которую накрывает такая деформация пространства, все линейные размеры изменяются одинаково (в относительном исчислении). Если укорачивается резонатор, то укорачиваются и длины световых волн в нём - так, что их количество на длине резонатора остаётся прежним. Это значит, что, с помощью оптического интерферометра, никаких фазовых эффектов из-за "растяжения-сжатия пространства" не обнаружится в принципе, и проект LIGO изначально был физически бессмысленен.
Уместно сказать пару слов о величине обнаруженного "эффекта". Растяжение пространства (strain) проявилось, якобы, через приращение длины резонатора; отношение этого приращения к самой длине (4 км) составило, в максимуме, 1*10-21. Для сравнения: до 1983 г. первичные эталоны длины делались как раз на основе оптического интерферометра, и их точность была не лучше 10-13. Затем скорости света приписали значение с нулевой погрешностью и приняли т.н. пролётное определение метра - что позволило перенести точность время-частотных измерений на измерения длин (это понадобилось для метрологического обеспечения работы спутниковых навигационных систем: GPS, ГЛОНАСС). В настоящее время, наилучшая точность (и разрешение) пространствено-временных измерений, обеспечиваемая на национальных эталонах, имеет порядок 10-16 - и это при временах усреднения порядка суток и даже более. Если специалисты, задействованные в проекте LIGO, утверждают, что они, для быстропеременных процессов, обнаруживают на пять порядков более тонкие эффекты, то национальные эталоны следовало бы упразднить, и аттестовать, в качестве первичных эталонов, интерферометры LIGO.
Но можно поступить проще - внимательно посмотреть на записи сигналов, из которых сделали сенсацию. Мы воспроизводим результат, полученный в Хэнфорде (красным цветом, "СИГНАЛ + ШУМ"). Это - временная развёртка суммы "полезного сигнала" и шума; длительность записи 0.2 s, по оси ординат отложена "деформация пространства", в единицах 10-21.
Ниже, синим цветом показан выделенный авторами "полезный сигнал" ("СИГНАЛ 1"), который подходит под требования ОТО, и соответствующий шум ("ШУМ 1", равный "СИГНАЛ + ШУМ" минус "СИГНАЛ 1"). Частота "полезного сигнала" изменяется от 35 до 150 Гц, т.е. отношение ширины полосы, которую занимает сигнал, к её центральной частоте составляет около 1.24. При такой широкой полосе, сигнал, превышающий по амплитуде шумы всего в два раза, не может быть выявлен однозначно. Это наглядно иллюстрирует пара зелёных графиков - "неправильный полезный сигнал", ограниченный по амплитуде 0.5 ("СИГНАЛ 2") и шум ("ШУМ 2"), дающие в сумме исходную запись "СИГНАЛ + ШУМ".
Как можно видеть, остаточный шум при "неправильном" сигнале принципиально не отличается от шума при "правильном" сигнале. Исходную запись можно представить огромным количеством вариантов сумм сигнала и шума - поэтому предъявление авторами сигнала, находящегося в согласии с требованиями ОТО, не обладает, в данном случае, никакой доказательной силой. При достаточно больших массивах записей с двух детекторов, нахождение двух "правильных откликов" с подходящей разницей во времени - это лишь вопрос эффективности используемого математического фильтрования. Которое отфильтрует всё, что душе угодно.
Таким образом, заявляя об удачном детектировании гравитационных волн, авторы выдают желаемое за действительное. Все выводы, которые они делают дальше - о массах чёрных дыр, породивших "сигнал", о дальности до них и о направлении на них, и даже о параметрах т.н. гравитона - отнюдь не соответствуют каким-либо физическим реалиям. Это - просто домыслы, сделанные на основе ОТО. Которая, как известно, не имеет ни одного честного опытного подтверждения (см. ту же книгу).
"ХАЯБУСА-2: ОЧЕРЕДНОЙ ПРОКОЛ НА АСТЕРОИДЕ"
Как сообщило японское космическое агентство JAXA -
http://www.hayabusa2.jaxa.jp/en/topics/20180922e/ - 21 сентября 2018 г. зонд
Хаябуса-2 произвёл успешную высадку двух модулей MINERVA-II
на поверхность астероида Рюгу,
и эту сенсацию повторили многие СМИ. Планировалось передвижение модулей по
поверхности астероида - весьма оригинальным способом. Считается, что астероид
обладает притягивающим гравитационным действием - хотя и исчезающе слабым.
В расчёте на это условие, модули имеют эксцентрические маховики, провороты
которых должны вызывать отталкивание от поверхности, а нескомпенсированную
возвращающую силу должно обеспечивать слабое тяготение астероида. Каждый
модуль снабжён семью цифровыми камерами, и от них ожидался поток изображений.
Вместо этого ожидаемого потока, японцы для начала выложили всего три фотографии (см. ссылку выше), две из которых смазаны из-за вращения модуля - и замолчали на несколько дней. Мы заподозрили, что в очередной раз подтвердилась наша концепция (см. книгу "Этот "цифровой" физический мир", на newfiz.info) о том, что малые космические тела не обладают собственным тяготением - тогда сила, возвращающая модули на поверхность астероида, отсутствует. Модули, благодаря работе эксцентриков, могут совершать в пространстве возвратно-поступательные движения - но уже не возвращаясь на поверхность.
Через пять дней японцы выложили ещё несколько фотографий (опять же, количеством не побаловали) - http://www.hayabusa2.jaxa.jp/en/topics/20180927e_MNRV/ - а также "фильм". Фотографии сделаны, якобы, по ходу прыжка - но нет ни видео, ни хотя бы последовательности кадров, которые демонстрировали бы, что прыжок С ВОЗВРАЩЕНИЕМ НА ПОВЕРХНОСТЬ действительно имел место. Что же касается "фильма", редкими кадрами показывающего движение Солнца над горизонтом астероида из-за его собственного вращения, то налицо исключительно жёсткая фиксация камеры относительно пейзажа, в течение более чем одного часа. Это совершенно невероятно в условиях исчезающе слабого тяготения - ведь у модулей нет никаких приспособлений для закрепления на поверхности. Поэтому этот "фильм" представляется нам подделкой.
Наконец, 03 октября 2018 г. зонд Хаябуса-2 отправил на Рюгу, с высоты 51 м, европейский посадочный модуль MASCOT, тоже не имеющий двигателей, но имеющий эксцентрический маховик. Опять же, планировалось перемещение по поверхности прыжками, получение фотоизображений и сбор информации с датчиков. Опять же, по ходу спуска на поверхность MASCOT сделал и передал множество фотографий, которых японцы опубликовали чуть не в реальном времени. Но, после сигнала о касании поверхности, поток объективной информации резко оборвался. Лишь на словах, модуль несколько раз подпрыгнул (с возвратами!) при посадке, и более чем успешно выполнил запланированную программу - которая длилась недолго, поскольку литиевая батарея была рассчитана на 12-16 часов работы. Подчёркиваем: нам не предъявили никаких объективных свидетельств о возвращениях после отскока - которые свидетельствовали бы о наличии собственного тяготения у астероида. А ведь имелись блестящие возможности для такой демонстрации: например, посадка модуля отслеживалась видеокамерами с материнской станции, и его возврат после отскока был бы отлично виден, в том числе и по движению, на поверхности Рюгу, тени от подпрыгнувшего модуля. Похоже, предъявлять-то нечего, потому что этот модуль на поверхности астероида тоже не задержался.
Проект Хаябуса-2 - это уже пятая по счёту миссия на малое космическое тело, вслед за NEAR, на астероид Эрос, Хаябуса-1, на астероид Итокава (про эти миссии см. в книге "Этот "цифровой" физический мир", на newfiz.info), а также DAWN, на малую планету Веста (см. данную страничку, тема "DAWN и Веста: очередная шутка NASA"), и ROSETTA, на комету Чурюмова-Герасименко (см. данную страничку, тема "Первая мягкая посадка на комету").
Ни одна из этих пяти миссий не может похвастаться честными и убедительными свидетельствами о том, что малое космическое тело обладает исчезающе слабым тяготением - в согласии с законом всемирного тяготения. То есть, за пять попыток не была опровергнута наша версия - согласно которой, у малых космических тел собственное тяготение полностью отсутствует.
"ПОСАДКА КИТАЙСКОГО "ЧАНЪЭ-4" НА ОБРАТНОЙ СТОРОНЕ ЛУНЫ"
Сообщение Китайского национального космического агентства
( http://www.cnsa.gov.cn/ ) об успешной посадке аппарата
"Чанъэ-4" на обратной стороне Луны 3 января 2019 г.
продублировали как сенсацию многие новостные каналы.
Между тем, на представленных китайцами видео- и фотоматериалах
даже неспециалисту заметны несуразности, кричащие
о фальсификации.
Так, посмотрим видео посадки (см., например копию https://www.youtube.com/watch?v=jyjyf4ANGIo ). Судя по положению в кадре амортизатора, видеокамера смотрит в ту сторону, в которую обращено "брюхо" посадочного модуля. И тогда посадка выглядит совершенно нереалистичной. Ведь только в сказках может быть такое: аппарат, горизонтально летевший с первой космической скоростью, выполняет полу-минутный тормозной манёвр, по ходу которого вектор скорости аппарата поворачивается к поверхности, а ориентация аппарата остаётся прежней - а затем, остановившись в полёте, аппарат быстро поворачивается "брюхом вниз" и начинает почти вертикальный спуск. На завершающей стадии этого спуска, не проявляется работа двигателей мягкой посадки. А, при встрече с поверхностью, амортизаторы ничуть не изменяют своих положений и не дают "отбоя". Всё это смешно даже комментировать.
Что касается кадров с ровером, то мы ограничимся указанием на наличие явных признаков не-лунного освещения. Дело в том, что аномальные физические условия в окололунном пространстве (см. http://newfiz.info/moon-optic.htm ) порождают хорошо известный феномен обратного рассеяния света Луной. А именно: при падении на ту или иную поверхность, луч света не испытывает зеркального отражения, если поверхность гладкая, и не испытывает диффузного рассеяния, если поверхность шероховатая - а, независимо от угла падения, почти весь отражённый свет возвращается туда, откуда он пришёл. На солнечной стороне Луны, почти весь отражённый свет возвращается к Солнцу, и не освещаемые прямо участки, не имея дополнительной подсветки, оказываются в совершенно чёрных тенях - что и продемонстрировали телекадры, сделанные "Луноходом-1" (СССР). На кадрах же с китайским ровером хорошо освещены даже панели с противосолнечной стороны (см., например, https://pbs.twimg.com/media/Dwxsv7pVYAMMMHo.jpg ). Ещё один прокол - это невероятно яркий ЗЕРКАЛЬНЫЙ блик на грунте из-за отражения света от боковой панели ровера; этот блик сопровождает съезд ровера с посадочного модуля (см., например, http://www.yapfiles.ru/show/756624/006.gif.html ).
Практически, невозможно проимитировать условия освещения на Луне при съёмках на Земле.
Книга: "Этот "цифровой" физический мир", newfiz.info